功率转动过,以至于有僧人问长老我精神是不是出了什么毛病,长老一笑说:没事,他找到了空。是-的,我找到了空,现在我能隐于市了,就是置身熙攘的人群中,我的内心也是无比清静。我第一次享受到了数学的乐趣,三体问题(注:三个质量相同或相近的物体在相互-引力的作用下如何运动的问题,是古典物理学的经典问题,对天体运动研究有重要意义,自十六世纪以来一直受到关注。瑞士数学家欧拉、法国数学家拉格朗日,以及近年-来一些借助于计算机研究的学者,都找出了三体问题的某些特解。)的物理原理很单纯,其实是一个数学问题。这时,我就像一个半生寻花问柳的放荡者突然感受到了爱情-.
"你不知道庞加莱吗?(注:十九世纪法国数学家,曾证明了三体问题在数学上不可解,并从三体问题出发,在微分方程问题上创造了新的数学方法。)"汪淼打断魏成问-.
当时不知道,学数学的不知道庞加莱是不对,但我不敬仰大师,自己也不想成大师,所以不知道。但就算当时知道庞加莱我也会继续对三体问题的研究。全世界都认为这人-证明了三体问题不可解,可我觉得可能是个误解,他只是证明了初始条件的敏感性,证明了三体系统是一个不可积分的系统,但敏感性不等于彻底的不确定,只是这种确定-性包含着数量更加巨大的不同形态,现在要做的是找到一种新的算法。当时我立刻想到了一样东西:你听说过蒙特卡洛法吗?哦,那是一种计算不规则图形面积的计算-机程序算法,具体做法是在软件中用大量的小球随机击打那块不规则图形,被击中的地方不再重复打击,这样,达到一定的数量后,图形的所有部分就会都被击中一次,这-时统计图形区域内小球的数量,就得到了图形的面积,当然,球越小结果越精确。
这种方法虽然简单,却展示了数学中的一种用随机的蛮力对抗精确逻辑的思想方法,一种用数量得到质量的计算思想。这就是我解决三体问题的策略。我研究三体运动的任-何一个时间断面,在这个断面上,各个球的运动矢量有无限的组合,我将每一种组合看做一种类似于生物的东西,关键是要确定一个规则:哪种组合的运行趋势是"健康的-"和"有利的",哪种是"不利的"和"有害的",让前者获得生存的优势,后者则产生生存困难,在计算中就这样优胜劣汰,最后生存下来的就是对三体下一断面运动状-态的正确预测。
"进化算法。"汪淼说:"请你来还是对了。"大史对汪淼点点头。
是的,我是到后来才听说这个名词。这种算法的特点就是海量计算,计算量超级巨大,对于三体问题,现有的计算机是不行的。而当时我在寺庙里连个计算器都没有,只有-从账房讨来的一本空账本和一枝铅笔:我开始在纸上建立数学模型,这工作量很大,很快用完了十几个空账本,搞得管账的和尚怨气冲天。但在长老的要求下,他们还是给-我找来了更多的纸和笔。我将写好的计算稿放到枕头下面,废掉的就扔到院里的香炉中。
这天傍晚,一位年轻女性突然闯进我屋里,这是我这里第一次有女人进来,她手中拿着几张边缘烧焦了的纸,那是我废弃的算稿。
"他们说这是你的,你在研究三体问题?"她急切地问,大眼镜后面的那双眼晴像着了火似的。
这人令我很震惊,我采用的是非常规数学方法,且推导的跳跃性很大,她竟然能从几张废算稿中看出研究的对象,其数学能力非同一般。同时也可以肯定,她与我一样,很-投入地关注着三体问题。我对来这一的游客和香客都没什么好印象,那些游客根本