第577章(1 / 2)

现在在林灰看来学术方面他所要做的依然是深耕自然语言处理。

深耕生成式文本摘要。

通过不断的深耕,从自然语言处理这一领域找到破局点

或者说点亮相邻于林灰已点亮科技成果的科技树分支才是最好的。

(林灰倒也不着急,即便是一时之间未找到合适的破局点其实也关系不大。

起码是一个月林灰还是不需要太担心的。

毕竟就生成式文本摘要这方面取得的“突破性进展(成功的搬运)”林灰最起码也能“混”一个硕士学位。

而这也是要林灰消化一段时间了。

其实林灰原本的估计更加乐观。

林灰原本是觉得将生成式文本摘要这个方向的论文搞清楚,就差不多能博士了。

不过通过最近跟伊芙·卡莉的交流,林灰觉得是他过于乐观了。

就像诺奖级成果不一定真的能获得诺奖一样。

就算林灰在生成式文本摘要方面鼓捣出的东西对于这个时空能称得上是博士级甚至更高级别的成果。

但想藉此一步到位获得博士毕业论文也是很有难度的。

毕竟此前林灰搞得学术内容其主要呈现形式都是围绕着生成式文本摘要这样一个算法专利的。

这个时空西方对于专利形式的学术成果更倾向于将之视作偏向于实践的东西,亦即工程上的成果。

而仅仅依靠工程方面的成果想要一步到位弄到博士方面的成果是很麻烦的。

虽然涉及到生成式文本摘要在学术上的收益这个稍微低于林灰的预期,不过问题不大。

林灰觉得学术上步子太大也不完全是好事情。)

既然短时间不搬运生成式对抗网路。

那刚才关于生成式对抗网路的思考岂不是等同于白白浪费脑细胞?

当然不是。

很多时候思维大概就是在一些漫不经心的思考中获得新的启发的。

关于生成式对抗网路这方面的思考,林灰突然意识到他还有一笔巨额的隐形财富。

那就是前世的人工标注数据。

虽然没太认真翻看前世一同携带来的信息。

但人工标注的数据林灰不可能是没有的。

尤其是前世那些企业级硬盘里面绝对不可能没有人工标注数据。

就算没啥图像的人工标注,涉及到一些文本的人工标注,绝对是不可能少了的。

毕竟这种东西相当实用,而且文本标注其实也不是很占地方。

要知道涉及到神经网路学习训练或者说深度学习训练在模型构建的时候可是需要大量的人工标注数据的。

尤其是监督学习和半监督学习更是需要大量的人工标注数据。

通常一个模型在架构的时候需要很多的人工标注的数据。

在调整的时候也需要很多的人工标注数据。

第259章 疯狂的数据

第259章疯狂的数据

举这样一个例子:

在图象识别里面,经常我们可能需要上百万的人工标注的数据,

在语音识别里面,我们可能需要成千上万小时的人工标注的数据。

涉及到机器翻译更是需要数千万语句标注数据。

说实话作为一个来自前世往后几年的技术人员。

此前涉及到人工标注数据的价值林灰还真没太当回事。

但现在看来,这玩意的价值此前明显被林灰忽视了。

林灰记得在前世2017年看到的一组数据说得是涉及到人工翻译的话。

一个单词的费用差不多是510美分之间,一