第5章(2 / 2)

那反过来呢?

他想让杨明成为最接近均值1/2的那个人,就需要预判其他人的数字和杨明可能选择的数字,最终决定自己要写哪个数。

要达成想要的结果,安无咎需要尽可能猜中每个人选数字的范围。

选项在1到100之间,假设这场游戏有足够多的理性人参赛者,多到可以忽略个人取向,那么猜得的数字会在1到100之间呈现均匀分布,则平均值在50左右,取1/2后,可选择的数字就进一步缩小,从[1,100]变成了[1,50],选50以上的就不可能成为均值的一半。依照概率或是中位数,大家普遍会猜中的数字则是均值50的一半,也就是25。

选取25以上的数字,获胜的几率就会大打折扣。

选择太大的数字,在心理上会造成负担,会害怕自己成为被平均掉的人,在这种心理下,选择更小一点的数才是安全牌。

但这只是第一层逻辑。

如果大家都意识到这一点,且遵循这一层逻辑,选中的数字将会普遍落在25以下,这样一来,最终均值的1/2又向下转移,变成12.5左右。以此类推,再下一层就是6.25……