6计算可得,石墨的理论比容量为372mAh/g,不计较成本的话,实验室中可以通过石墨烯技术将这个数字变成747mAh/g。

但是,相对于锂的容量是3860mAh/g,十倍的差距,从数字上我们就可以直观感受下的,若是我们能在这领域做出突破,未来的前景,会是多么广阔!”

这个差距,正式吸引着无数科研工作者和无数材料研究室,飞蛾扑火,趋之若鹜,在锂电领域,不断前仆后继,投入重金尝试实验的原因所在,那是代表着上千亿,市场前景的庞大诱惑。

国际上,无论是私人公司板块,还是国际层面的版块,都没有停止,对锂金属做负极材料的研发。

“我们最开始的实验,也是类似的安排。从基本采用95.7%的石墨作为负极材料开始,粘合剂为羧甲基纤维素钠(CMC)和丁苯橡胶(SBR),集流体为铜箔。

石墨层在不同厚度上逐步趋向于优先,在90微米,正极活性材料使用LiFePO4,集流体为铝箔。

至于隔膜,用的是Celgard2325的三层隔膜,厚度也是在实验中测试出来的优选,25微米。这也是目前的主流!”

“所以,我们还是要在负极材料涂层薄膜上找出路!”这一年多的研究,他们也不是白干活的,“我们在这里,也做了多次尝试····”

既然是集思广益,大家也都不怕出丑,各种想法逐一汇报而出,畅所欲言,年轻人的思维活跃,千奇百外的角度,不由得让吴桐和一起参与会议的成老含笑。

科研,需要这样的头脑风暴,活跃思维。科学用脑,要学会科学思维。这样不仅事半功倍,而且还能有所创造。科学研究,本就是是一项极其艰巨复杂的创造性脑力劳动。

当然,另一方面,还要求科研工作者踏踏实实、认认真真地去干,来不得半点虚伪,科研容不得造假和胡来!因为胡来,付出高昂代价海里去了!

“锂离子电池怕水怕氧,常用的表征SEI的技术手段非常有限!”

“常规的透射电镜法呢?”有人举手,尝试问询,“我来抛砖引玉!”

吴桐轻轻点头,她记得这位,大师兄章邵明推荐过来的学生,虽然还有些青涩,但是据陶然和小师兄的观察汇报,学习态度是端正认真的,天赋也可以,值得培养,前不久,被吸收进入了核心团队。

??第三八一章 引玉

“我们尝试过,但是由于高能粒子的照射,容易引起SEI及电极结构的破坏;虽然低温冷冻电镜能够解决这一问题,但是由于使用条件的限制,在实验中无法使用常温电解液,也无法实现原位观察。此外,这个过程中用到的设备过于昂贵,不具备推广价值!”陶然直接给出正面回复。

这个实验他们尝试过的,利用各种电镜技术,在纳米尺度理解锂枝晶生长的演化过程,一直都是解决这个问题至关重要的法门,他们自然不会错过尝试!

他们的新能源电池研发是要面向于市场的,即贵且费的方法,就不适用了!他们要寻求的是,能够有效遏制锂枝晶生长,且单位代价要相对物美价廉,且还要能够长时间供电,才能适用于作为真正新能源电池,去推广面向大众。

实验室的方法,其实很多都是存在于理想数据中,不具备推广价值的。

“我和成旭尝试了,前期利用原位电化学原子力显微镜(EC-AFM)对锂离子电池多种负极材料SEI膜成膜机理进行深入研究的基础上,利用SEI膜成膜电位比金属锂沉积电位更正的特点,设计了两步法研究锂枝晶的实时原位观察实验!”

一年多的研究,还有吴桐偶尔请教指点,陶然和阮成旭可以说,他们在新能源电池,特别是锂电池版块,有